
PhRT 11. VELOCIT’I- SEDIMESTATION 
I. ISTRODCCTIOX 

The number of investigators using the ultracentrifuge a3 a research tool has 
increased greatly in the past two decades; thib has been made possible by the 
development of new commercial instruments. As the iiistrumeiits have become 
more widely available, interest has gronm in using the ultracentrifuge for as 
many purposes as possible. For example, tu-o recent applications of sedimentaf ion 
velocity experiments are the measurement of molecular weights by use of the 
boundary condition (the Arcliibald method) aiid the binding of small molecules 
by proteins. The experiments have been made more accurate, chiefly by careful 
control of rotor speed and temperature, and refinements have been made of the 
equations used in measurement. Also, there have been striking developmenttj in 
the basic theory; together vi th  the observation by -1rchibald that one can 
measure such purely thermodynamic quantities as molecular weights and activity 
coefficients from sedimentation velocity experiments has come the realization 
that gradients of thermodynamic poteiitials are the driving forces which cause 
sedimentation. Today there is a smooth transition from the theory of the wdi- 
mentation velocity experinleiit to  that of the equilibrium experiment. 

A .  SCOPE O F  PART I1 

Part  I1 contains results obtained from tn-o fundamental equations for the 
ultracentrifuge: the conservation of mass and the expression for the f l o ~  of a 
solute. Starting with these til-0 equations one can develop relations for measuring 
sedimentation Coefficients and heterogeneity in sedimentation behavior, for 
finding molecular \\-eights, and for studying interacting systems. Seither methods 
of computation nor experimental results have been included, and mathematical 
solutions to the continuity equation are considered in Part  111. This review 
includes the period of roughly two decades since the publication of The Ultra- 
centrifuge by Svedberg and Pedersen (89). 

-111 attempt has been made to derive many of the results given here in a unified 
manner. Consequently the method of derivation often differs somewhat from Ihe 
one used in the original articlc, and also the form of the result may differ. This 
does not mean that a particular derivation or the form of a final equation is an 
improvenieiit over that  given by the original authors; rather, it is the natural 
result of trying to derive diverse equations by a common route. 

B. QUASTITIES JIE.ISUIZCD I?; SEDIMEXTATIOS EXPERIMEXTS 

In  a sedimentation experiment one takes photographs which yield the curve 
of concentration (c) or concentration gradient Tersus distance. Also one measures 
the temperature (7‘) and angular velocity (a) of the rotor, and the times ( t )  a t  
which photographs are taken. Different optical systems are in use. Most common 
is the schlieren optical system described by Philpot (73) and by Srensson (91). 
I n  a schlieren photograph the abscissa i. a linear function of the radial distance 
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r ,  and the ordinate is related in the same manner to the gradient of refractive 
index (an/&), from which the concentration gradient (aclar) can be obtained. 
Philpot and Cook (74) have described an optical system based on the Rayleigh 
interferometer, which yields a curve of n vs. T ,  and this is beginning to  be used. 
The original light-absorption system (89, 90) is finding favor again, for studying 
substances a t  low concentrations which absorb light strongly and which show a 
marked dependence of sedimentation behavior on concentration. 

There are certain theoretical problems in obtaining a curve of ac/ar vs. r from 
a schlieren photograph (1, l G ,  50, 95) or in obtaining ;1 curve of c vs. r from a 
photograph of Rayleigh fringes (2’ i ) ,  but this subject mill not be reviewed here. 
It will be assumed that n and anldr (or c and ac/dr when there is a single solute) 
are directly measurable quantities. 

11. FL-YDAMEKTAI, EQCATIUXS 
\. LOOHUI’JATE STSTEX 

The equations for the ultracentrifuge take ;1 simple form when cylindrical 
coordinates are used. The ultracentrifuge cell itself is a truncated sector of a 
cylinder (see figure 1). It is neces-ar:,. to u ~ e  a cell of this shape because sedi- 
mentation occurs radially and uqe of a rectangular cell n o d d  cause convection, 
by reason of accumulation of solute a t  the cell walls. In  this coordinate system 
h is the distance parallel t o  the axis of rotation and 0 is the sector angle. Since 
the concentration of a solute iq usually a function only of r ,  a t  a given time, 
the other two coordinates rarely appear in the final equations. 

The area ( A )  of a cylindrical surface parallel to  the h axis and cut by the sector 
angle 8 is 

-4 = BIir (1) 

and the volume contained in the sector is 

dV - = Bhr 
dr  

B. COSSERVATION O F  M B S S  

Consider a section of volume such as that shown in figure 1, with cylindrical 
surfaces parallel to  the h axis a t  T~ and r2.  Provided that the solute does not take 
part in chemical reactions, the amount of solute flowing in through the surface 
a t  TI minus the amount flon-ing out a t  r2 must equal the rate of change with time 
of the amount ( g t )  remaining in this volume. 

where J ,  is theJlow (or flus) of i, the amount crossing unit area in unit time. 
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h 

FIG. 1. Diagram of the solution contained in an ultracentrifuge cell (not to  scale), 
showing the cylindrical system of coordinates used to describe sedimentation processes. 
The darkened section represents an illustrative element of volume. Light from the opti- 
cal system passes through the solution parallel to  the h axis. 

I n  equation 4 v i  is the velocity of i (centimeters per second) and c ,  is the concen- 
tration of i on a weight per  volume scale (here grams per cubic centimeter). 'The 
amount of i in the section of volume is giren by 

where 0 and h have been taken outside the integral sign because c i  is in general 
a function only of r .  Combination of equations 1, 3, and 5 gives the important 
result : 

(6) 

1. The con t inu i t y  equat ion  
Differentiation of equation 6 with respect to r at constant t gives the continuity 

equation. 

If chemical reactions occur, then terms must be added to describe the reaction. 
Thus for the reaction 

one has continuity equations of the form 

where the molecular veights JIB, etc. are required because the concentra- 
tions are expressed as weight per volume rather than moles per volume. It will 
be noted that when equation 9 is summed over products and reactants one has 
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since 

T J I *  + y x ,  = 21,lfG + V J I D  

Many experimental procedures in sedimentation analysis are based on solu- 
tions to  equation 7,  which is a partial differential equation. These solutions give 
c or dc/ar  as a function of r and t .  They are usually based on a simple flow 
equation (55) 

(11) 

in which s ,  and D, are sedimentation and diffusion coefficients and w is the 
angular velocity in radians per second. This equation is applicable only in certain 
conditions; a more general flow equation is given later (equation 29). The 
different solutions to  equation ’7 vary chiefly in the functional dependence 
assigned to  s, and D, (whether they are treated as constants or as functions 
of concentration or pressure) and in the choice of initial and boundary con- 
ditions. This subject is considered in detail in Part  I11 of the review. 

C .  FLOJY EQC.1TIOXS 

Perhaps the most important development of recent years in the theory of 
sedimentation is the derivation of general f l o ~  equations from thermodynamics 
of irreversible processes (37 ,  SO, 71, 76) tiy de Groot, Mazur, and Overbeek (38), 
by Hoojman (44, 45, 46), and by Haase (40). All of the equations used in sedi- 
mentation analysis depend upon a proper formulation of the flows, and one 
might say that the fundamental problem in the descriptive or phenomenological 
theory of sedimentation is the derivation of accurate flow equation$. The ones 
derived by thermodynamics of irreversible procesbes are believed to be far more 
accurate than present experiments. They are limited to  systems close to  equi- 
librium; horTever, this does not seem to be a serious limitation in studying sedi- 
mentation and diffuqion in liquids. 

1 .  Origin a n d  properties of thp equations 
The following procedure vas  uaed (38, 45, 46) to  derive flow equations for the 

ultracentrifuge. By combining four basic physical principles (conservation of 
mass, conservation of momentum, conservation of energy, and the second law of 
thermodynamics) an expression was obtained for the dissipation function of 
Onsager (70, 71) denoted (46) by TU, where u is the rate of production of entropy 
by the irreversible processes and T is the absolute temperature. This expression 
contains the flows and can be written in a compact form 

in which the X ,  are identified as the “forces” causing the flows, and the flows 
have been enclosed in parentheses to  indicate that the frame of reference has 
not been specified. (The equations given here apply to  a transport process oc- 
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curring in one dimension and are not given in vector notation.) In  an isothermal 
system containing q + 1 components it is necessary to describe the flows of 
only q components; here the remaining component is specified to be the solvent 
and is labelled component 0. Kext the flows were assumed to  be linear functions 
of the forces appearing in equation 13. 

The equations represented by equation 14 are called phenomenological equations 
and the coefficients (Ltk) are termed phenomenological coefficients. They are 
functions of temperature, pressure, and composition and of the frame of refer- 
ence. Equation 14 is limited to  small values of Xk or, in other words, to  srnall 
departures from equilibrium. Combination of equation 13 and 14 yields 

In  the procedure used by Hoopman (45) the reciprocal relations of Onsager 
(70, 71) take the form 

(Lrk) = (Lkd (16) 

when equation 14 is written in terms of q f low and forces, and the forces have 
been chosen to give the entropy production (equation 13). 

A primary result of applying this procedure to the problem of sedimentation 
and diffusion in a centrifugal field is the equation for Tu (equation 31 of Roo$- 
man, Holtan, Mazur, and de Groot). I t  is given here for an isothermal system, 
with the omission of a minor term involving the Coriolis force and with the 
assumption of electroneutrality ; also the system is treated as being a t  mechanical 
equilibrium. 

(Xote that this summation includes all q + 1 components.) In  equation 17 
(J2 . )a  denotes flow relative to an arbitrary frame of reference (a), D is the partial 
specific volume (cubic centimeters per gram), p is the density of the solution 
(grams per cubic centimeter), z is the valence of an ion (+ 1 for Sa-, - 1 for Cl-, 
etc.) ,  JI is the molecular weight, E is the charge on one mole of protons, as ' d r  
is the electrostatic potential gradient, and p is the chemical potential per  gram. 

In  equation 18 po is the reference potential (a function of temperature and 
pressure) and y is the activity coefficient on the c scale. -5 more compact form of 
equation 17 is 
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in which p is the total potential per gram (the sum of the chemical, centrifugal, 
and electrostatic potentials) 

and in which the subscript t denotes a partial derivative taken with only time 
held constant. From this point on, discussion of the flow equations will be limited 
to  nonionizing solutes (zi = 0 for i = 1, . . . , 4). 

When the flows relative to  an arbitrary franie of reference are specified to  be 
those relative to  the solvent (component 0), equation 19 reduces to  an equation 
in q flows and y gradients 

4 

Tu = -E (Ji)o 
i=l 

since the flow of solvent relative to  solvent is zero. 

Thus, following the procedure discussed above, Hoo9man (45) obtained the 
flow equations 

(Jib = -2 k = l  ( L i k ) O  (z) (i = 1, . . . , q )  

The experimentalist requires an equation for flows relative to  the cell. A con- 
venient method of obtaining such an equation (45) is to convert equation 23 
into one in which the flows are expressed relative to the mean volume 
velocity V I .  

The flows relative t o  the cell are then identical with those relative to  u' when 
the partial specific volumes are constant, independent of pressure and compo- 
sition. 

u' = O ( a j  = constant) ( 2 4 4  

It mill be assumed here that  the partial volumes can be treated as constants and 
therefore floms relative to  the cell (denoted simply by J )  will not be distinguished 
from those relative to  v'. 

To obtain an expression for flow relative to  the cell in terms of the flows 
relative to  solvent one may begin with the equation 
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in which vg is the velocity of solvent relative to the cell. Then an expression 
for uo is obtained by multiplying equation 25 by O , ,  summing over all cornlpo- 
nents, and making use of equations 24, 24a, and 0,cz = 1. 

The following expression for flow relative to the cell is obtained by substituting 
equations 23 and 26 into equation 2 5 ;  this is equation 22 of Hoofman (45), 
limited to the case of constant partial volumes. 

(27b) 

It will be observed that a simple and compact set of flow equations has been 
obtained, but that  this last set of equations does not satisfy equation 13 and the 
reciprocal relations do not apply in the form of equations 16 and 23a. 

Lsk f Lki (27c) 

However, given the L , k  one could make use of the reciprocal relations in other 
ways: for example, by finding the coefficients (L&)O in terms of the coefficients 
L , k  and then using equation 23a. Since the aim mas to obtain a correct and useful 
set of equations for the flows relative to the cell and to determine the status of 
the reciprocal relations for this set of equations, it is unimportant that they no 
longer fit into the scheme of equations 13 and 14. 

2 .  A practical flow equation f o r  multicomponent systems 

For the purposes of the experimentalist it  is convenient to express equation 27 
in a form which contains directly measurable quantities and the least number 
necessary of unknown coefficients. First examine the variables and the coefficients 
in this equation. 

In  Hoo9man's notation (45) 
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One may regard ac, /ar  and w2r as variables and the other terms as coefficients. 
Then a practical form of equation 28 is (cf. Hoofman (45)) 

in which 

P 

Dzj = C L k P k j  ( i , j  = 1, “ ‘ , y )  (31) 
k=l 

It will be observed that s ,  and D,,, like the coefficients L,L, are functions of the 
frame of reference and of temperature, pressure, and composition. In  Lamm’s 
flow equation ( 5 5 )  (equation la),  which is strictly applicable only to  tvo-compo- 
nent systems, the total flow is a simple summation of the flows from sedimenta- 
tion and from diffusion. This is also true of equation 29. Measurement of the 
diffusion coefficients D,, has been reviewed by Costing (36). 

Equation 30 allows one to  see what use can be made of the reciprocal relations 
in interpreting sedimentation measurements. For a system containing y solutes 
there are y sedimentation coefficients (the sedimentation coefficient of the solvent 
is given implicitly by equations 24 and 24a) and y 2  coefficients Lzk. Since there 
are only ( $ % ) ( y ) ( y  - 1) restrictions on the L,L from the reciprocal relations (see 
equation 23a), the number of coefficients Llk exceeds the number of sedimenta- 
tion coefficients plus the number of restrictions from the reciprocal relations by 
( $ 5 ) ( y ) ( y  - 1). Thus, except for the unique case q = 1, one can obtain from 
sedimentation coefficients alone only combinations of the coefficients Lzk. 

On the other hand one can use studies of diffusion to  find all y 2  coefficients 
Lrk, as Hoo9man (44) has pointed out; it is necessary to  determine the various 
pkJ from equilibrium measurements. Theory and methods have been worked out 
for using the Gouy diffusiometer to  study interacting flows in diffusion (23, 30, 
36, 68) and the four diffusion coefficients of several three-component systems 
have been determined (21, 22, 23, 68). 

3.  Correlation of sedimentation and diflusioiz measurements; 
equations for  molecular weights 

Since the same coefficients L , k  enter into the expressions for the sedimentation 
and diffusion coefficients (equations 30 and 31), one can correlate measurements 
of sedimentation and diffusion not only for tm-o-component but also for multi- 
component systems. Consider first the standard case of a two-component system 
( q  = 1). Equations 29, 30, and 31 become 
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These equations assume a more familiar form when LI1/c1 is written as JlI/fl, 
fl being a translational frictional coefficient per mole, and dp1/dc1 is evaluated by 
differentiating equation 18. 

Then 

In  equation 34a Dll is written simply as D, because it is the same for solute and 
solvent; the sedimentation coefficients of solute and solvent are different, but 
one can be found from the other by use of equations 24 and 24a. 

Derivation of these equations by the methods of thermodynamics of ir- 
reversible processes answers certain questions which were left unanswered by 
derivation from kinetic theory. (1)  Does the expression for the sedimentation co- 
efficient contain Ai% or some other measure of the volume of the solute? ( 2 )  Should 
p ,  in equation 33a, be taken as the density of the solvent or as that  of the so- 
lution? (3)  Are the values off obtained from s and D the same a t  all concentra- 
tions, or only a t  infinite dilution? These questions were asked, and left un- 
answered, a t  the conference on the ultracentrifuge in 1949, according to the 
report by Longsworth (62) on the proceedings of the conference. Indeed, it was 
thought probable that  the answer to question 3 is negative (cf. Kegeles, Klainer, 
and Salem (51)). 

An expression for N1 is obtained by eliminating Lll between equations 33 
and 34. 

(36 )  

I n  the limit of zero c1 this confirms Svedberg's equation (88, 89), as noted by 
Hooj.man, Holtan, Alazur, and de Groot (46) (see their equation 80). 

The same procedure can be used to find an expression for illl when three- 
component systems are studied. Studies of the sedimentation and diffusion of 
proteins must be made in systems of a t  least three components (protein, salt, 
water) in order to avoid charge effects. Since the expression for s1 contains the 
two coefficients Lll and L12 
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it is necessary to  write expressions for only tn-o of the four D s j .  

Then equations 38a and 38b can be solved to give Lil and L1? in terms of Dll, 
D12 and the four p t 3 .  Substitution of the resulting expressions into equation 37 
and evaluation of the p z 3  by differentiating equation 18 give an equation for 
M1 (12) analogous to equation 36. In  the limit of zero c1 this becomes 

The result bears a strong resemblance to  Svedberg’s equation (see equation 36a) 
and also to  the equation for finding ill, from sedimentation equilibrium studies of 
three-component systems (c j .  Part  I). 

Since charge effects are responsible for studying proteins in systems of three 
components, one Tyants an expression like equation 39 which will apply to  
systems containing ionized solutes. For simplicity, consider a system containing 
a macromolecular ion P of fixed charge + z ,  a counter-ion X of charge -1, and 
another cation B of charge +l .  Details of the derivation (to be published) can- 
not be given here. The neutral components are chosen as follows: 1 = PX,, 
2 = BX. In  the limit of zero c, the result is 

Thus the valence of the macromolecular ion enters as an unknown into the 
equation for the molecular weight in very much the same manner as i t  does in 
the expression for sedimentation equilibrium. This conclusion is in agreement 
with the earlier treatment of Tiselius (89, 93). 



THE THEORY O F  SEUIJ1EST.kTIOT ASALYSIS 755 

4 .  Translational frictional coeficients 

The sedimentation and diffusion coefficients of a t-n-o-component system 
yield, when extrapolated to  zero cl, not only the molecular weight but also the 
translational frictional coefficient f. Several theories have been developed for 
randomly coiled molecules which relatef to  an average configuration (20, 64, ’79). 
Similar theories have been deriyed for macrolilolecules which can be represented 
by rigid ellipsoids of revolution; these relate f to  the dimensions of the ellipsoid 
or to an “equivalent ellipsoid” (66, 69, 80, 82). The latter theories have been 
intended for use with proteins. However, proteins must in general be studied in 
three-component systems and the expressions for s,, D,,, and D12 do not yield a 
single translational frictional coefficient. Inctead the interactions of one solute 
with another solute and with the solvent must be expressed separately. Thus 
Lamm (5‘7) has used four frictional coefficients to  describe the flows of the solutes 
in diffusion of a three-component system. 

This problem has been known to exist for several years but only recently have 
measurements been made which begin to  show the magnitude of the effect. 
Recent studies by Dunlop (21, 22) on the diffusion of three-component systems 
show that although the cross-term diffusion coefficients D12 and D21 are small, 
they are not in general negligible in comparison with the main coefficients Dll 
and D2?. Electrophoretic studies by Longsworth (60) show that neutral molecules 
such as sucrose and urea have appreciable electrical mobilities in the presence of 
salts, again demonstrating a significant interaction of flows. J-ery accurate values 
of f  are required in a theory such as that  of Scheraga and Malidelkern (82) in 
order to  obtain only a fair accuracy in the dimensions of the ellipsoid. It seems, 
therefore, that  the theory for measuring and interpreting translational frictional 
coefficients must be extended to three-component systems in order to  study 
proteins. 

111. MEASUREMEST OF SEDIJIESTATIOS COEFFICIEXTS 

In  the last tn-o decades there have been significant advances in the measure- 
ment of sedimentation coefficients, both in experiment and in the theory. Ex- 
periments of the 1930’s and early 1940’s often show a variability of 5 per cent 
in s. In  1948 Cecil and Ogston (19) shon-ed that they could reproduce the sedi- 
mentation coefficient of p lactoglobulin within 0.5 per cent, and recently measure- 
ments on bovine albumin (11) and thyroglobulin (67) have been reported which 
show a precision of 0.2 per cent. Improvements in control and measurement of 
rotor speed and temperature account for this in part;  better methods of com- 
puting sedimentation coefficients are in part responsible. An important factor in 
the precision achieved by Cecil and Ogston (19) was the use of an integrated 
equation relating boundary position to  time, rather than the differential form 
uqed in the past. Later Alberty (4) showed the value of taking the dependence 
of s on c into account n.hen integrating the equation for the boundary position. 

Sedimenting boundaries are in general diffuse, and the position in the boundary 
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which is to be used for measuring s requires careful definition. By starting from 
the conservation of mass, Gutfreund and Ogston (39) showed how the sedimen- 
tation coefficients of small molecules could be computed from the changes with 
time of boundary curves which never form “peaks” in the schlieren photographs, 
and Goldberg (34) showed that  the correct boundary position for freely sedi- 
menting boundaries is given by the square root of a second moment of the 
boundary gradient curve. 

Cells have been devised by Kegeles (49) and by Pickels, Harrington, and 
Schachman ( 7 5 )  which xi11 form a boundary between two different solutions 
while the rotor is revolving, and these have made possible new types of measure- 
ments. 

A.  DEFINITION O F  SEDIMCNTATIOK COEFFICIENT A S D  O F  BOUKDARY POSITIOS 

In  order to measure a sedimentation coefficient it is first necessary to define 
it in such a way that  it can be determined from experimental quantities. A 
frequent definition of s is velocity per unit field strength, and sometimes s is 
defined as M(l - Dp)/f. Hoir-ever, molecular velocities are not in general di- 
rectly measurable, and the second definition suffers both from a lack of generality 
(see equation 30) and from being a theoretical rather than an experimental 
definition. With two provisions, one can give an  experimental definition of s, in 
terms of the $ow J , .  The first provision is that there be a region of the cell in 
which all 
provision 
Then one 

concentration gradients are zero and solute i is present. The second 
is that the curve of c i  vs. r be accepted as a measurable quantity. 
can use equation 29 to define s ,  by 

To show that J ,  is a measurable quantity, write equation 6 with r1 = ro 
(the position of the meniscus) and r2 = rw,  the position a t  which one wishes to 
measure J , .  

There is no flow of any solute through either end of the cell, and consequently 

(J1)7.0 = 0 (i = 1, . . ’  , q )  
Therefore 

(43) 

Provided that  one allows the use of numerical integration and differentiation 
to find the right-hand side, equation 4% shows that  J ,  is expressed in terms 
of measurable quantities. 

In  practice, the sedimentation coefficient of a solute usually is measured 
from the velocity of the boundary formed by this solute. Equations 41 and 42a 
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FIG. 2.  Diagrams of concentration versus distance for certain types of boundaries : 
T O  is the position of the meniscus, n is the boundary position, and rw is in a region (8)  
where ac/ar = 0. (a) A hypothetical, perfectly sharp boundary (no diffusion). (b) A typi- 
cal, freely sedimenting boundary (c = 0 a t  ro) .  (c) The type of boundary formed by small 
molecules; c may remain non-zero at  T O  throughout the experiment. 

provide the basis for this. Consider first the hypothetical case in which the 
boundary is perfectly sharp a t  all times. The boundary curve is sketched in 
figure 2a: rb denotes the position of the boundary and c8 is the concentration of 
the solute beyond the boundary, between r b  and r,. The integral in equation 
42a is readily evaluated. 

rc dr = (r: - r 3 c B / 2  (44) 16 
Before differentiating with respect to time, it is helpful to  note that in a zero- 
gradient region equations 7 and 29 give 

(‘45) 

Then substitution of equation 44 into equation 42a, followed by differentiation 
and use of equations 45 and 41, shows that the rate of movement of the boundary 
yields sp. 

(46) 

Equation 45 shows that c changes with time in the region ahead of the bound- 
ary. Combination of equations 45 and 46, followed by integration, yields a simple 
expression for c8 in which c o  is the initial concentration of the solute. 

cpr; = cor: (47) 

This is the radial dilution rule of Trautman and Schumaker (96), which applies 
whether or not s varies with c. 

In  general the boundaries are not perfectly sharp. However, one can define 
the boundary position by equation 44, as Goldberg (34) pointed out, and use 
the resulting equation to measure r b .  A convenient expression for r b  in terms of 
c is obtained by subtracting equation 44 from 2cpJ:;r dr. 

r: = rt + 2 s,” r(cp - c) dr/$ (48) 
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With a schlieren optical system one wants an expression for r b  in terms of ac/ar. 
When the left-hand side of equation 44 is integrated by parts the result is 

Equations 48 and 49 can be used to measure the sedimentation coefficients of 
small molecules (cf. figure 2c) as well as those which form freely sedimenting 
boundaries. When c = 0 a t  ro equation 49 gives the boundary position in terms 
of the square root of a second moment ; this is the well-known result of Goldberg 
(34). When rb is found by numerical integration other forms of equation 49 may 
be more convenient for computation; often it is helpful to replace r by TO + 
(T - r0).  Then 

Once the boundary leaves the meniscus it is customary to equate r b  with 
Tu, the position of the maximum gradient, provided the boundary appears sym- 
metrical. Equation 49 gives a basis for estimating the error in this procedure. In  
a symmetrical boundary rH coincides with ?, the first moment. 

The boundary posit’ion is related to f by equation 49, with c = 0 a t  ro. 

r: = f 2  + u2 (52)  

ac u2 = [r (T - f )  - dr/c8 ar 

When equation 52 is differentiated with respect to time and divided by 2w2r;, 
the result is: 

If one denotes by s’ the apparent sedimentation coefficient which would be 
measured from (d?/dt)/w2f, then equation 53 becomes 

For the case of a single solute with constant s and D ,  u2 is given (9, 2 5 )  by 

and equation 54 becomes 
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or 

(56b) S' 
- = 1 - [RT/M(l  - 8p)w2 7.3 - . . . 
S 

Equation 56a is the same expression found by Lamm (56, 89), who studied 
the position of the maximum gradient given by FaxBn's equation for a single 
solute with constant s and D. Equation 54 is limited to symmetrical boundaries 
(if ? is to equal T ~ )  but it is applicable to concentration-dependent and poly- 
disperse systems, as well as to a single solute with constant s and D. The L =mor 
term in equation 56b is roughly 0.1 per cent for a solute of molecular weight 
60,000 and 1 per cent for one of molecular weight GO00 (for w2 = 4 X 10' sec.-2, 
(1 - Op) = 0.25). 

B.  RELATIOX O F  BOUSDARY POSITIOX TO TIME 

When the sedimentation coefficient can be treated as a constant, independent 
of r and t ,  and w does not vary with 1, then integration of equation 46 yields the 
simple result (89) : 

In (Tb/irO) = sw?t (57) 

If w and the rotor temperature vary with time, the result is 

when the product sg can be treated as a constant (cf. Cecil and Ogston (19)); 
q is the viscosity of the solvent. Sufficient control of w and T has been achieved 
for many instruments so that one need take account only of the variation of w 
during the period of acceleration. If w is proportional to t during acceleration, 
then (94) 

l' wz dt = w: [ ( t  - t f )  + t,/31 (57b) 

where wf is the value a t  full speed and t f  is the time required for acceleration. 
In  the following equations w and T will be treated as constants, with the under- 
standing that variations can be treated in the manner just discussed. 

In  general, sedimentation coefficients depend on concentration and cb varies 
with time (see equations 45 and 47). .Uberty (4) showed that one can express 
s b  as a power series in t and then find the coefficients of this series by integrating 
equation 45. For example, if s iq  related to c by 

s = so(1 - /;IC - kzci) (58) 
then the dependence of SB on t is given by 

SB = S + ( l  + 2 ( S O W ? t ) [ k 1 C 3  + 21L2(C0)?]  + ' . ] I(59) 

(59a) s+ = S"[l  - k I C O  - k . , (C0) ' ]  
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where eo and st are the initial coiicentration and the sedimentation coefficient. 
The boundary position is found by substituting equation 59 into 46 and inte- 
grating. 

Several methods of coniputiiig sedimentation coefficients by this or an equivalent 
equation have been discussed (4, 11, 97). Equation 46 has been integrated in 
closed form for the two cases s = s0/(1 + k c )  and s = sO(1 - kc)  (97) and 
the relation between lii (rxlro) and t has been given (28) for the case in 
which s = so(l - kc) .  

The problems introduced by a dependence of s on pressure do not fit readily 
into this scheme of analysis. In the first place the basic equation for flow relative 
to  the cell (equation 2‘3) does not apply if the partial volumes vary significantly 
with pressure. In  the second place Eriksson (24) and Fujita (29) have shown that  
a consequence of the depeiidence of s on P is a continuous concentration gradient 
from the boundary to  the bottom of the cell. In  these circumstances equation 
41 no longer provides an experimental definition of s and equation 44 no longer 
defines the position of the boundary. -4 useful approach to the problem is solution 
of the continuity equation for the case in which s is an empirical function of 
pressure (see Fujita (29) and 0 t h  and Desreus ( 7 2 ) ) .  

In (n/ro) = s+w?t  + s + ~ , ( J ~ ) ~ [ x - ~ c ~  + ~ X . ? ( C ~ ) ? ]  + . . . (60) 

C .  POLYDISPERSE SYSTEMS 

When the system contains several solutes one can obtain a weight-average 
sedimentation coefficient, or more generally a “weight-refractive” average. It 
will be assumed throughout this part of the review that the refractive index n 
can be represented by 

n = no + 2 R ,  c ,  
i=l 

for a system containing q solutes. In equation 61 no is the refractive index of the 
solvent, a t  the corresponding temperature and pressure, and the differential 
refractive increments R are taken to  be constants, independent of concentration 
and pressure. 

It is convenient to  introduce the symbol n, for the refractive increment, the 
difference in refractive index between solution and solvent. 

n, = n - no (63) 
0 

n, = R; cZ 
2=1 

One can proceed in the same manner as for a single solute. Definition of the 
boundary position by 

rn, dr = ( r i  - ri)nf/2 I:” 
leads to  an expression for r b  analogous to equation 49. 
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ri  = [ (r2nJro + r2 2 dr]/ n! 

Differentiation of equation 64 with respect to  time, followed by use of equ a t’ ions 
41,42a, and 45, gives the rate of movement of the boundary position. 

In  deriving equat’ion 66 one obt&s an expression for dn!/dt from equation 45: 

Combination of equations 66 and 66a, followed by integration, shows that the 
radial dilution rule (96) applies also to  mixtures. 

(67) 
The refractive increment of the initial solution is represented by nt. 

Before integrating equation 66 to give r b  as a function of t one must express 
the dependence of s a  on concentration. In  general s ,  is a function of all the solute 
concentrations and this function can be represented by a Taylor’s series taken 
about s,,O, the sedimentation coefficient of solute i a t  zero concentration of  all 
solutes. 

2 ’  2 0  rbnc = Tonc 

s1 = sz,o - aj R3 c j  - c alk R, c, Rk Ck - . * . (68) 
I 3 k  

The coefficients a ,  and a]k are related to partial derivatives taken a t  zero con- 
centration of all solutes. Because the concentrations are measured refractonietri- 
cally i t  is convenient to  insert the differential refractive increments R,. This 
means only that the derivative describing the dependence of s, on c, is written 
as the product of tn-o coefficients. 

Equation 66 can be integrated \Then a ,  and a j k  have the same values (al and 
an)  for all solutes. 

s ,  = s ,  0 - alnc - a2n: 

In (?“blrO) = ~+2w?t + s+(w?t)?[u,n~ + 2a2(n:)2 - ( p * / ~ + ) ]  + . . . 

(68b) 

(69) 

The result is analogous to equation 60. 

In  addition to the constants al and a? the term in ( ~ ~ t ) ~  of equation 69 contains 
p ,  the standard deviation of the distribution of so. If one defines a fracticln a ,  
based on refractive increment, 

u ,  = R,cy/n: 
then p and so are defined by 

SO = cYtsz,O 
z 
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The niean sedimentation coefficient st Iyhich appears in equation 6‘3 iq related 
to  So by 

x+ = 30 - n1nG - a?(??)? (73 )  
Measurement of p is di;.cussed briefly under “tests oi homogeneity,” arid methods 
of computing both st and p have been given (10). 

Experimentally it is simpler to  measure the position of the niaximum gradient, 
r H ,  than it is t o  find rb from equation 65. ,ilso .pH can usually be measured more 
precisely than r b .  Hovever. Ti-ith a polydisperse system one wishes to  measure 
either a well-defmed average sedimentation coefficient or some definite property 
of g(s) (the distribution of s) such as the position of the median or of the maximum 
ordinate. To  a first approximation rrr corresponds to the niaximuni ordinate of 
~ ( s )  (see equation 8Gb). Hoxever, there is an evact correspondence only a t  zero 
time and zero concentration. The variation with time may be seen readily from 
equation 86b, which relates & / d r  to g(s) for the case in which both diffusion 
and the dependence of s on c are negligible. This has been discussed by Kinell 
(52). The variation with concentration is the result of the Johnston-Ogston and 
boundary-sharpening effects (see the section on the measurement of g(s)). Thus 
the sedimentation coefficient measured for a polydisperse system from drH/dt 
corresponds approximately to  that of the maximum ordinate of g(s) once the 
results are extrapolated to  zero concentration, but the slope of this extrapolation 
has not been analyzed in terms of dependence of the sedimentation coefficients 
on concentration. 

D. THEORY FOR B0USl ) IHY-FORMISG CELLS 

JT’ith the cells developed by Kegeles (49) and by Pickels, I’larrington, and 
Schachman (75) one can form boundaries betn eeii any two solutions, provided 
only that the outer solution is more dense than the inlier one. These cells have 
been used to measure the sediiiientation coefficients of small molecules (81),  to 
find the rate of movement of a boundaiy formed betneen two different concen- 
trations of the same solute (421, to measure the refinctive increment of n solutioii 
(3), to  study associating spteins  (81). and to  find the rate of movement of a 
boundary formed by one solute IT hen a more rapidly sedinienting solute is present 
on both sides of the boundary (43, 81). 

Consider first the equations for a boundary iormed between two solution< of 
the same solute (figure 3). The boundary pocition i. defined in the stme manner 
30 in equation 44. 

Differentiation with respect to time, follo\\-ed by use of equations 41, 42a, ::lid 
45, yields an expression for drbldt.  

(75) 
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FIG. 3. Diagram of concentration versus distance after a boundary has been formed 
between two solutions ( p  and y) containing different concentrations of the same solute, 
and sedimentation has proceeded for a time. 

Thus the rate of movement of such a boundary does not give the sedimentct’ <t ion 
coefficient of the solute, as analogy with diffusion experiments might lead one 
to expect, but rather a function of s and c. Combination of equations 75 and 45, 
folloTved by integration, gives another instance of the radial dilution rule (96). 

d ( c 7  - CS) = constant = [ d ( c 7  - cb ) ] t=o  (76) 

Equation 75 can be integrated to  give r b  as a function of time by the same pro- 
cedures used when cp = 0. Hersh and Schachman (42) have done this and have 
found good agreement between theory and experiment even for such a markedly 
concentration-dependent substance as deoxyribonucleic acid. 

Cse of the boundary-forming cell to measure sedimentation coefficients of small 
inolecules is based on equations which have been discussed in Sections III,il 
and II1,B. The advantage of the boundary-forming cell is convenience: the 
boundaries are of the type shown in figure 2b, while with a conventional cell they 
are of the type in figure 2c, and i t  is easier t o  measure rH than to  find r b  from 
equation 50 by numerical integration. However, the zero-gradient region dis- 
appears more quickly than when one uses a conventional cell. This results in 
less precision because the boundary has moved a smaller distance by the end 
of the experiment. Also equation 56b shows that the error in measuring s from 
T H  becomes serious for solutes of molecular weight less than 6000. 

Measurement of the sedimentation coefficient of a s l o ~  component in the 
presence of a faster one i. complicated by accumulation of the fast component 
in the boundary region. This effect, caused by a dependence of the sedimentation 
coefficient of the fast component on the concentration of the s l o ~  component, is 
likely to  cawe convection and spurious values for s (13). Hersh and Schachman 
(43) have obtained experimental evidence for this effect, and they suggest that 
it can be overcome by increasing the concentration of the fast component in the 
outer solution. 
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E. CONVERSION O F  SEDIRIESTATION COEFFICIEUTS TO STAKDARD C O N U I T I O S S  

I n  order t o  compare measurements it has been customary to refer values of 
s to a standard choice of temperature and solvent by the approximate relation: 

sg/( l  - Op)  = constant (77) 
Equation 77 is based on the expression for s in tITo-component systems (equation 
33a) with the assumption that f is proportional to  the viscosity of the solvent, q. 
Such an assumption can be made only for rigid macromolecules and is known to 
be quite incorrect for synthetic high polymers. Proteins, on the other hand, are 
studied in systems of three components and equation 77 can only be an approxi- 
mation for such systems. Studies by Longsworth (61) of the diffusion of bovine 
plasma albumin show a slight but significant dependence of (f/v) on temperature. 
Thus when measurements of s are referred to standard conditions by equation 
77 i t  is important that  the actual conditions of measurement be given, as well 
as the values of 0, q ,  and p used in the computation. 

Iv. R h X S U R E h I E S T  O F  HETEROGESEITY 
The most striking feature of sedimentation velocity experiments is their sensi- 

tivity to  heterogeneity. This is a property shared by other moving boundary 
methods: for example, electrophoresis and chromatography by frontal analysis. 
A simple transformation of the boundary curves gives a coniplete description of 
a sample’s heterogeneity with respect to  s for the limiting case in which spreading 
of the boundaries by diffusion is negligible and the sedimentation coefficients 
can be treated as constants. This transformation yields the distribution of sedi- 
mentation coefficient; figure 4 shows diagrammatic distributions of s for the types 
of systems commonly encountered. The integral distribution, denoted here by 
G(s), can be used to  describe either discrete mixtures or Pamples with a continuous 
distribution of s. The differential distribution, g(s), is used only for continuous 
distributions. 

A. MEhSCREhZEXT OF SEDIMEXTATIOX COEFFICIEST DISTRIBUTIONS 

The integral distribution gives the fraction of the sample having sedimenta- 
tion coefficients less than or equal to  a specified value of s. Fractions based on 
the refractive increment (see equation 70) \Till be used here. T h e n  the sample 
contains a discrete mixture of solutes (e.g., figure 4b), G(s) is simply a summation. 

or 

G(s,) = (nb/n;), (78b) 

where (n;/n:), is that fraction of the refractive increment of the original sample 
which includes solutes with s 5 the specified value s,. (The symbol nb will be 
used to  denote a portion of thc refractive increnieiit of the original sample, n-hile 
n, refers to  the total refractive increment at a position in the cell, T . )  When the 
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FIG. 4. Diagrams showing how the heterogeneity of a sample is described by its dis- 

tribution of sedimentation coefficient: (a) one solute; (b) two solutes; (c, d) a continuous 
distribution of s. 

sample contains a continuous distribution of s, G(s) is given by the integral wbich 
corresponds to  equation 78b. 

G(sj) = I s i  - 2 ds/n: (79) 

The differential distribution is simply the derivative of G(s) with respect to s. 

The sedimentation coefficients in equations 78-80 are those a t  zero concentra- 
tion of all solutes; TThen the context might cause confusion on this point, the 
quantities in these equations will be denoted as so, g(so), and G(s0). 

Consider first the transformation which yields G(s) or g(s) in the limiting case 
when diffusion is negligible and the sedimentation coefficients can be treated 
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as constants. T h e n  the sample contains a discrete mixture of solutes each one 
will form a boundary a t  a position given by 

s l  = [In ( T ~ / T O )  , ] / ~ ~ t  @la)  

(81b) 

or 
s , d t  ( rdz  = roe 

The change in refractive increment (Anc) ,  across each boundary is simply the 
refractive increment (R,c,) of the solute which forms this boundary, and is 
found by integrating equation 45 for s ,  = constant. 

(Anc), = R ,  ~ : e - ~ ~ ' ~ ~ ~  (82) 

cyI. = (riAn,),/r:n: (83) 

Combination of equations 70, 81b, and 82 gives an experimental equation for a,. 

This, together with equation 78a, gives G(s). 

G(s,) = (rtAn,),/r;n," (s, I s,) (84) 
I 

When there is a continuous distribution of s this becomes 

where rj and Sj are related by equations 81a and 81b. Differentiation with respect 
to  s gives 

or 

since equation 81b shows that 

(2) = u2tr 

These equations were understood in the earliest days of research with the ultra- 
centrifuge (cf. Rinde (78, 90) and Signer and Gross (85)). 

In  order to use this approach it is necessary to take two factors into account. 
One is spreading of the boundaries by diffusion, and the other is sharpening of 
the boundaries by the dependence of s on c. (In some cases dependence of s on 
pressure is also a serious problem.) As a starting point, it is convenient to define 
experimental quantities which have the units of s, g(s), and G(s), and which 
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become identical with them once the effects of diffusion and concentration de- 
pendence have been removed. 

s = [In (r/rO)]/w2t (88n) 

s 
G*(S) E 1 g*(S) dS 

0 

When the effects of diffusion have been taken into account, but not those of con- 
centration dependence, the last two quantities will be written g(S) aiid G(S), 
without the asterisk. 

1 .  Effects of diffusion 
In this section the effects of concentration dependence will he neglected and 

only those of diffusion discwsed. From a study of the expression for uz, the 
second moment about the mean of the boundary gradient curve (Gf .  equation 
Xa) ,  Baldwin and Killiams (15) observed that extrapolation of g*(S) to  infinite 
time should yield g(s), when the sample contains a continuous distribution of s, 
because spreading of the boundary from diffusion is proportional to  a lower 
povier of t (roughly t'!') than that from heterogeneity (roughly proportional to t ) .  
They suggested extrapolating g*(S), at fixed values of S, versus ( l / t )  t o  ( l / t )  == 0. 
They also pointed out that  p ,  the standard deviation of g(s) (cf. equation 72), 
could be obtained from the variation of u2 with t .  

Gosting (35) made a thorough matheniatical study of the extrapolation and 
concluded that there is a range of time in which a linear extrapolation yields the 
desired result. However, this range of time is not always available to the ex- 
perimentalist because the length of the cell limits the duration of the experiment, 
and there is also an experimental limitation on w (at present corresponding to  a 
rotor speed of 1000 R.P.s.). In  order to  see how well the extrapolation works when 
one cannot reach the linear region, an expression was obtained (9) for g*(S) when 
g(s) can be represented by the normal error, or Gaussian, function. 

The resulting equation is simpler, and serves equally well to  illustrate the nature 
of the problem, when g*(S) is obtained for the case of a rectangular cell and con- 
stant field, although an expression for the actual case of a sector cell and changing 
field has been given (9). For the former case 

p*2 = p 2  i- 2D/w4r;t (90a) 
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0 05 10 15 

K/t  9 
FIG. 5 .  Elimination of the effects of diffusion in finding distributions of sedimentation 

coefficient by an extrapolation to infinite time. The curves were computed by equation 
90 for the  case in which g(s), the distribution of s, is Gaussian. The “apparent distribu- 
tion of s” a t  any time is denoted by g*(S), where S is a reduced coordinate with the units 
of s (equation 88); p is the standard deviation, and S the mean, of g(s). 

where the (constant) centrifugal field strength has been represented by w2ro and, 
for simplicity, it  has been assumed that all solutes have the same diffusion co- 
efficient D. This equation, in a slightly different form, was derived by Alberty 
(2) in his studies on boundary spreading in electrophoresis and has been used 
(14) to study the feasibility of finding mobility distributions by extrapolation. 

The extrapolations to infinite time are shon-n in figure 5a as a plot of p g * ( S )  
vs. ( K / t ) ,  where K = 2D/p2w4r ; ,  and the apparent distributions are shown in 
figure 5b as pg*(S )  vs. (S - s ) / p .  In  this may one can represent the behavior 
of all systems with a Gaussian g ( s ) ,  regardless of their values of p and D .  The 
limiting slopes for the extrapolations, which coincide with the actual graphs in 
the linear region of the plot, are shown as dashed lines. These were found from 
Gosting’s equation 19 (36), which applies regardless of the form of the distribu- 
tion. One can see that there is only a very small region (0 < K / t  < 0.1) in 
which the extrapolation is strictly linear but that  there is a larger region 
(0.1 < K / t  < 0.8) in which choosing the best straight line will yield values of 
g(s) which are correct within present experimental error. In  the linear region 
g*(S) should be extrapolated against a function of t ( 3 5 )  which can be approxi- 
mated by (l /r t) .  However, in this region g * ( S )  differs from g(s) by little more 
than experimental error, and in the approximately linear region the simpler plot 
of g*(s) vs, ( l / t )  scrves equally well (9). 

2.  Effects  of concentration dependence 
I n  this section only the effects of concentration dependence will be considered, 

and those of diffusion will be treated as negligible. h rigorous treatment of the 
problem is not available, but one can achieve an understanding of its nature by 
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FIG. 6. Sketch of the boundary curve of n, TS. r for a multicomponent system Rhen 
diffusion is negligible. 

considering simplified cases. The chief effect of concentration dependence is to  
cause a sharpening of the boundary when G(s) is coiitinuous, or to  compress the 
system of boundaries if G(s) represents a discrete mixture. In  treating the latter 
case, which is sketched in figure 6, two simplifying assumptions will be made. 
First i t  is assumed that the boundary position ( r b ) %  is related to  the sedimeiita- 
tion coefficient of solute i in the region (7)  just ahead of the boundary by 

This neglects terms of order (u2t)? (see equation 60) and assumes that transport 
of solute i in the y region occurs only by sedimentation. The second assumption 
is that a% still is related to  ( ~ i 4 n ~ ) ~  by equation 83. This neglects the Johnston- 
Ogston effect (47), which will be discussed shortly. Equations 84 and 85 follow 
from equation 83, but differentiation of equation 85 with respect to sa now yields 

or 

since (as,/ds) is the reciprocal of (dS/dsu) !. 
The derivative ( a s , / d S ) t  is given by the relation between S , , O  and s:, since a 

comparison of equations 88a and 81 shows that  s: = S. Thus Tyhen s: is expressed 
as a function of all the solute concentrations in the y region 

s: = s,,o - .f(C?, c;, . . . 1 CY) (93) 
then (ds,/ds) is given by 

(i$)t = 1 + (z), 
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One can express f as a Taylor’s series (equation 68), but in practice the relation- 
ship between si,o and s: rarely is known accurately in a complex system such as 
this, and one must rely on approximations such as equation 68b, in which s, is 
treated as a function of n, only. Then 

When az = 0 this may be expressed as 

with the aid of equations 88a and 88b. Jullander (48) introduced this approach 
to the problem of concentration dependence effects in finding g(so); he made 
use of an empirical relation between so and M to find g(A1).  

The boundary-sharpening effect is shown in figure 7 by a family of curves, 
g(S) vs. S, corresponding to the same g(so) but to different concentrations. These 
were computed from equations 02b and 94b for the case of a Gaussian g(so); 
equation 68b was used to relate s, to s , , ~  with So = 4 X 10-13, al = 0.4 X 1O-lo, 
and a2 = 0. The curves coincide for small values of S where the concentrations 
are lorn, but the maximum ordinate appears a t  lower values of S as the concen- 
tration is increased and the curves diverge for large S. The behavior shown in 
figure 7 is typical of experimental data (for example, see figure 2 of Williams and 
Saunders (98)). Occasionally this has been interpreted to mean that solutes of 
smaller s show less dependence on concentration than those with larger values 
of s. The example given in figure 7, in which all s ,  have been assigned the same 
dependence on concentration, shows that such an interpretation is not warranted. 

A second effect of dependence on concentration is the Johnstoii-Ogston effect. 
Johnston and Ogston (47) found that c, will differ on the two sides of a boundary 
if s, differs. Their work explained why the apparent analysis for a system (by 
equation 83) gave results which varied with the total concentration. The deriva- 
tion used in finding equation 75 is directly applicable to this problem if one 
assumes again that  transport occurs only by sedimentation. Then equation 75 
can be rearranged to give the difference in c, between the regions 6 and y (figure 
6), on either side of the boundary formed by solutej. 

Ac, = c:As,/(s; - s, )  

In equation 95 Act and As, are abbreviationsfor (cf - cz’) and (sf - s:); equation 
46 has been used to identify (drb/dt)/u2rb with si .  The equations derived by 
Johnston and Ogston (47) apply to a rectangular cell and constant field, but 
nevertheless their result agrees with equation 95. Some of the complications 
which result from use of a sector-shaped cell and changing field are discussed 
under “Analysis for Two Solutes,” Section IT’,C (page 773) .  

By means of equation 95 one can proceed from left to right through the system 
of boundaries sketched in figure 6, if the dependence of s, on el, c2, is known 
(equation 68), and find the concentration of each solute in the X region ahead of 

(95) 
6 
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FIG. 7 .  Theoretical curves for the boundary-sharpening effect when there is a continu- 

ous distribution of sedimentation coefficient. The refractive increment n: is a measure 
of the total concentration; when n: = 0 the curve of g(S) vs. S yields the distribution of 
sedimentation coefficient, g(s0) vs. so. The curves were calculated for a Gaussian g(s0) by 
means of equations 92b, 94b, and 68b. 

the boundary system. The concentrations in the X region are related to those 
in the initial solution by an integrated form of equation 45. If the concentration 
dependence of s, can be represented by equation 68b, then 

In (c,/c,) = -22w2t[s,,o - aln: - ~2(n:)~] - 2 ( ~ * t ) ? S ~ [ u ~ n ~  + 2a?(n:)?] + . . . (96) 

From c: one can find at and this, together with the computation of s ? , ~  from 
d, is a solution to  the probleni of finding G(sn) (8, 54). An approximate procedure 
has been giren (8) for performing thece computations when  SO) is continuous. 

A 0  
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and Larner, Ray, and Crandall (58) have programmed the calculations for a 
computing machine. For a continuous distribution, the shape of the boundary 
is much more dependent on the boundarp-sharpening effect than on the 
Johnston-Ogston effect (see figure 5 of Baldwin (8)), although the latter in- 
fluences the position of the boundary. 

An alternative approach to  the problem of conrentration dependence effects 
is the extrapolation of curves of g(S) vs. S to  zero concentration (24, 98, YO). 
The theory has not been studied, although the results of extrapolation and of 
computation have been compared (8) and found to agree reasonably well. 
Methods which seem to work fairly well are the extrapolation of S us. nz a t  
fixedvalues of G(S) (24) and extrapolation of S vs. nz a t  fixed valuesof g(S)/g(S),,, 
(8). I n  order t o  succeed in finding g(so), by either extrapolation or computation, 
one must be able t o  measure curves of g(S) vs. s at  concentrations where the 
sedimentation coefficients are within 10 per cent of their values a t  infinite dilu- 
tion (s/so 2 0.9). Thus it has been possible to  measure the heterogeneity of 
deoxyribonucleic acid (DSX) (83, 84) only by using a light-absorption optical 
system which allom meam-ements to be ninde on deoxyribonucleic acid a t  
concentrations as l o v  as 0.001 g./lOO ml. 

Effects of pressure dependence on finding g(so) have been discussed recently 
by Eriksson (24), who made a very careful comparison of the size distributions 
found for polymethyl methacrylate saniplec 131- cedimentation analysis and by 
fraction a t' ion. 

B. TESTS O F  IIOMOGESEITT 

When a single, symmetrical boundary curve i i  obberved the most useful test 
of homogeneity iq  Fujita's equation (28 ) ,  nhich n-ns obtained by solving the 
continuity equation for the case of a single solute n hose hedimentation coefficient 
varies linearly with c. This equation is discussed in Part I11 of this review. To 
use it as a test of homogeneity one iieedb the diffusion coefficient D, the de- 
pendence of s on c ,  and the area mid ninsimum height of the boundary gradient 
curve as a function of time. JIethodb of computing the results have been dis- 
cussed (1 1) and applied to  a study of the homogeiieity of bovine plasma albumin. 
The boundary-sharpening effect is quite large even for a globular protein such 
as  bovine albumin, which shoi,s on!y a mild dependence of s on c (see figure 8). 
X different approach is required to  look for the presence of small amounts of 

other components. If one could neglect dependence on concentration, then FaxBn's 
equation ( 2 5 ,  89) could be ubed as the ha for plotting In ( d c l d r )  vs. ( r  - T H Y ;  

according to his equation this graph should be quite linear and its slope should 
be ~ ~ 2 / 2 D ( e * ~ ' " ~ ~  - 1). The preqeiice of additional components is shown readily 
by a plot of this kind. However, because the boundary-sharpeniiig effect is usually 
large (cf. figure 8), one should use Fujita's equation to  study this problem. It 
predicts that the boundary curves n-ill be fairly symmetrical, but the equation 
is rather complicated for use in comparing the shape of the boundary with theory. 

An alternative approach to this probleni is the use of moments of the boundary 
gradient curve. *%n equation can be n-ritten directly for the derivative with 
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FIG. 8. The apparent diffusion coefficient versus time for bovine plasma albumin a t  
two different concentrations (co  = 0.67 and 1.36 g./100 ml.).  Filled circles show results 
calculated by Fujita's equation; open circles show results calculated by the older equa- 
tion of FaxBn, which does not take into account the dependence of s on c. These graphs 
show the behavior of the main component; a small amount of more rapidly sedimenting 
material was also present. Heterogeneity of the main component viould result in an up- 
ward slope of the line through the filled circles. (Taken from Baldwin ( l l) .)  

respect to  time of any moment and this equation can be integrated without 
knowing the form of the boundary curve, provided that  the concentration is 
zero a t  T~ This is a very general approach, since one can take account simul- 
taneously of heterogeneity, diffusion, and dependence of sedimentation and 
diffusion coefficients on concentration, to  the extent that  s, and D, are expressed 
as functions of n,. The resulting equation (equation 20 of Baldwin (10)) relates 
p ,  the standard deviation of the distribution of so, to  uz by measurable quantities. 
Since p = 0 if only a single solute is present, this is n useful test for the presence 
of additional components. Measurement of p from the variation of 2 with t 
also is useful in checking the accuracy of g(so), since p can be computed directly 
from g(s0). 

C .  ASALYSIS FOR TJVO SOLUTES 

When effects of dependence on concentration can be neglected equation 83 
gives the fractional amount of each solute. The dependence of s on c was taken 
into account in deriving equation 95; the only assumptions were that transport 
occurs solely by sedimentation in the regions on either side of the boundary and 
that the rate of movement of the boundary gives the sedimentation coefficient 
of the solute which disappears in the boundary. Hen-ever. Harrington and 
Schachmaii (41) found that equation 76, which is a corollary of equations 75 
and 95, is not obeyed by strongly concentration-dependent system?. h typiral 
houndary curve is sketched in figure 9 ;  both solutes 1 and 2 are present i n  the 
y region, while only the more slou-ly sedimenting solute 1 is present in the f i  
region. Harrington and Schachmnn concluded that transport by convection 
occurs in the 0 region as a result of solute 1 being left behind the Pr boundary 
at  a lower concentration than the existing cf;  the negative density gradient then 
results in convection. 
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FIG. 9. A sketch shoving the Johnston-Ogston effect in a system containing two sol- 
utes (1 and 2). The boundary curve of refractive increment (n,) against distance ( r )  is 
shown. 

A very interesting solut,ion to  the problem of finding cyl and cy2 under these 
circumstances was worked out by Trautman, Schumaker, Ilarrington, and 
Schachman (97). Granted the existence of convection in the p region but not in 
the y region, one can measure the following quantities, provided the concen- 
trations are zero a t  T O .  

(See equations 65 and 67 for the derivation of equation 98.) Since there is assumed 
to  be no convection in the y region, onecan measure s; from the rate of movement 
of the by boundary provided the boundary positions for solute 2 and solute 1 
are coincident iii the boundary. (As can be seen in figure 9, solute 1 contributes 
to  an,/ar in the Sy boundary region and thus influences the position of rf ' . )  
Then, according to  equations 45 and 46, 

One more equation is needed in order t o  solve for R,c'; and R&, and so it 
was assumed (97) that, 

S:/S: K (100) 

where K is a constant, and therefore given by sl,o/sz,o. Substitution of equation 
100 into equation 45 gives 
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and combination with equation 99 yields 

Rlc: = R , c : ( r f y / ~ J x  (101a) 

One can solve equations 97, 98, 09a, and lOla for either Rlc? or RSC;; thus 

(102) R~c: = [n, ( ? b  B Y  /ro)2 - n~]/[(rf ly/r0)2"-K) - 11 

These equations were found (97) to give an accurate analysis of a highly con- 
centration-dependent system. 

v. S T U D Y  O F  IiW>;RL%CTINO SYSTEMS 

When studying a system in which A reacts with H to  form AB, or A reacts 
with itself to  form polymers, one would like to deteimiiie the composition of each 
complex and the equilibrium and rate constants for tlic reactions. Little work has 
been done in adapting the ultracentrifuge for any of these measurements, but 
there are clear indications that  it mill be a useful tool for studying reactions of 
macromolecules, and it is likely that  developments will come rapidly in this field. 
The theory for chemically reacting systems is important also for the analysis of 
mixtures, since misinterpretations can result if one ignores the occurrence of 
chemical reactions. This point has beeii strikingly demonstrated by recent work 
of Gilbert (31), Gilbert and Jenkins (32) and Cann, Kirkwood, and Brown (18). 

A. CONSTITUENT SEDIMENTATION COEFFICIENTS 

When cheniical reactions occur one must reexamine the basic theory for meas- 
uring concentrations and sedimentation coefficients. The conservation of mass 
applies to  the sum of all forms in which a component exists, and one can write 
equations analogous to 6 ,  7,  and 42a in which the concentrations and transport 
coefficients are replaced by constituent concentrations and constituent sedimenta- 
tion and diffusion coefficients. Tiseliiis (89, 92) introduced this concept, and 
Alberty (3) has used constituent mobilities to  study the electrophoresis of chemi- 
cally reacting systems. His notation will be followed here in writing a bar above 
a constituent quantity. If constituent A exists in m forms, then 

(103a) 

(103b) 

(103c) 

In  these equations (cA)i is the number of grams of constituent A in form i, per 
unit volume. 
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The statement of conservntioii of mahs takes the following forms: 

(10ib) 

The reader can verify that equation lOib is consistent with the continuity equa- 
tion given earlier for each species of a chemically reacting system (equation 9). 
It is useful to  have an equation relating boundary velocity t o  constituent con- 
centrations and sedimentation coefficients, and the equation analogous to  75 
mill be given next. Suppose that constituent A is found in two adjacent regions 
(6 and y )  on either side of a boundary, and that transport occurs only by sedi- 
mentation in these regions Then the boundary position of constituent A is 
defined by 

(105) 

and i t  follows from equations 1048, 104b, and 103a that 

(106) 

Thus if constituent h disappears across the Py boundary, SI is given by the rate 
of movement of the boundary position defined by equation 105. Equation 106 
shows the experimental significance of constituent sedimentation coefficients. 

One can use values of 3 t o  study complex formation (cf. Alberty and Marvin 
(5)). Suppose that a macromolecule P forms a series of complexes with a smaller 
molecule A. One would like to  measure y,  the average number of molecules of 
A bound per molecule of P. The equilibrium constant for the formation of complex 
PA, can be written as: 

C P A ,  = IcicPck (107) 

If m is the maximum number of molecules of ,1 bound, then the constituent 
sedimentation coefficients of P and A are 

slcl: - s i e t  (A%): = e;: - 

where M P C ~ ~ , / ( M ~  + LITA) is the weight concentration of P in the form PA;. 
The definition of y (moles of A bound per mole of P) gives 
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Substitution of equation 107 into 108, followed by differentiation with respect 
to  cA at constant i?p gives, after multiplying by cA and making use of equations 
109 and 107: 

Sex t  differentiation with respect to cA of the expression for ?P (again a t  con- 
stant &) 

shows that  (cf. Linderstr@m-Lang (59)) : 

d In cp 
- - Y  ziiG - 

(I. 12) 

(It is assumed in equations 111 and 113 that the K ,  can be treated as conststnts 
independent of cq.)  Combination of equations 111 and 113 gives an expression 
for y in terms of constituent sedimentation coefficients and concentrations. 

n-here use has been made of the relation 

c.4 - C.4 = !J?pIf.+/lIfp (1 15) 

One can find cA,  for use in the right-hand term of equation 114, by successive 
approximations. 

Comparison of equation 114 with the equations derived by Alberty and Marvin 
( 5 )  for electrophoresis shows that (a,  for a Langmuir distribution of complexes 
with (m/m - 1) 'v 1 

and ( b )  for the case in which only the single complex PA, is formed 

d(Sp) - (i - y)(sp - sp) nFz - (117) 

(In making this comparison the reader should note that Alberty and Marvin 
(5) use molar concentrations in their definitions of constituent concentrations 
and mobilities.) Richards and Schachman (77) have quoted an equation which 
includes m as a parameter and which implicitly relates y to  the constituent 
concentrations and sedimentation coefficients. (Compare equations 19 and 21 
of illberty and 3larvin (j).) 

B. MOSOMER-POLTMER EQU1LIBRI.I 

Theoretical treatments of this case have been given by Steiner ( 8 7 ) ,  Field 
and Ogston (26), and Gilbert (31). When the reactions are sufficiently rapid so 



that  the concentrations may be treated as if the system n-ere at  equilibrium, one 
can describe the experiment as if there \$-ere only a single solute with an unusual 
dependence of s and D on concentration. Thus if 

and one can assume that the equilibrium relation betn-een thc concentrations 
is always a good approximation 

then SA and D, are function? of Steiner (87) has expressed s in terms of the 
sedimentation coefficients of the individual species and the equilibrium constants 
for the reactions. 

Gilbert (31) has solved the continuity equation to  give a description of the 
shape of the boundary curve for the cate in \vhich equilibrium is rapid, and 
equation 119 is therefore a good approximation. The concentrations of intermedi- 
ate polymers, containing less than m monomers, are assumed to be negligible. 
He treats the caqe of sedimentation in a rectangular cell, with a constant field, 
when diffusion is negligible aiid o tor each bpecies is a constant. For m 2 3, the 
concciitration gradient curve shorn two maxima in the boundary region. Since 
dc/dr does not fall to  zero between the tTvo niaxinia, one has a simple experimental 
criterion for distingui>hing this case from that of a mixture of t n o  nonreacting 
soliites. IIowever, i t  is often difficult t o  obtain complete resolution of the bound- 
ary curves, so that  this distinction may not always be useful. Gilbert concluded 
that  if one treats such a chemically reacting system as if it were a simple mixture, 
both the apparent sedimentation coefficient and the apparent fraction of the 
faster component would increase ryith the total concentration, while the apparent 
sedimentation coefficient of the slower component would not change. He illus- 
trated the possible application of his theory to  data of XIassey, Harrington, and 
Hartley for the polymerization of a chymotrypsin (65). There are many protein 
systems kno~vii to  undergo association-dissociation reactions : for example, 
insulin, hemoglobin, casein, and many proteolytic enzymes. 

Since the case of rapid equilibrium between monomer and polymer is phe- 
nomenologically equivalent to  the case of a single, concentration-dependent 
solute, one can use existing theories to  study this problem. When the dependence 
of s on cis linear, and the variation of D with i- can be neglected, Fujita’s equation 
(28) describes the shape of the boundary. The result of an increase of S with i- is 
a boundary-spreading effect and one can expect associating systems to  shohv 
rapidly spreading boundaries. If the dependence of on i- is found to  be linear, 
one can expect rather symmetrical boundaries (28). For nonassociating systems 
a rapidly spreading boundary generally means heterogeneity. Provided the 
equilibrium is rapid one can tell whether or not heterogeneity is present, in  
addition to association, by means of the equation for measuring p (10); the 
boundary spreading TI hich result- from :\->ociation iq taken care of by terms 
involving the dependence of S on C If the monomer is hoi11ogene0~5 p should be 
found to  equal zero. 
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Schachman and Harrington (81) have suggested using the boundary-forming 
cell to see whether or not the equilibrium is rapid. When a boundary is formed 
betxeen try0 solutions (0 and y)  of an associating solute, S y  > S@ if y is the outer 
solution. As the solute in the y region sediments away from that in 0 region, con- 
vection should result if equilibrium is reached slon.ly. 

C.  COMPLEX FORMriTIOS 

Formation of a corticotropin-bovine albumin complex has been studied by 
B ~ o v I . ~ ,  Rloyer, Davies, and Cox ( l i ) ,  n-ho measured the constituent sedimenta- 
tion coefficient of corticotropin in the presence of bovine albumin. The interpreta- 
tion of their measurements is made somewhat uncertain, as they point out, by 
the possibility of convection resulting from accumulation of albumin in the 
corticotropin boundary (see Section II1,D on page 762). Richardsand Schachnian 
(717) have recently demonstrated the possibility of measuring (SP - SP) dire{-tly, 
by use of a double cell and a Rayleigh optical system (74). 

Gilbert and ,Jenkins (32) have solved the continuity equations for the case 
in which A and B react to  give AB and the concentrations are aliyays rehted 
by the equilibrium constant. They consider the case of sedimentation in a rectan- 
gular cell and constant field, with negligible diffusion and constant sedimentation 
coefficients. In  the numerical example lvith which they illustrate their equations, 
the boundary positions of the -4 and B constituents are not coincident in the 
@y boundary across which A disappears. The difference betv-een Sl; and the 
velocity of the boundary, per unit field strength, is fairly small and dependent 
on MB/;IJA; when MB/M.4 = 0 the two are the same. This poses a problem in 
using equation 106 to  measure SA,  since usually one cannot measure the boundary 
position for constituent A alone (equation 105), but instead must use a curve of 
dn , ldr  vs. r to  find r b .  

Complex formation between P and A sometimes is studied by means of a par- 
tition cell and the results are interpreted by the equations used for dialysis 
equilibrium experiments. This is based on a simple physical picture: the macro- 
molecule binds a certain number of molecule~ of X and carries these with it. To 
find this number (y) one uses equation 115 n-ith ci and F p  equal to  the initial 
concentrations and c q  equal to  the concentration of -4 remaining after the niacro- 
molecule has sedimented p a d  the partition. Such a treatment asrumes, among 
other things, that si = 0 ;  it is useful only for studying the binding of quite small 
molecules by a macromolecule. 

D. ISTERCOYVERSIOV O F  ISOVERS 

When there is an equilibrium betv-een two isomeric forms of a solute I\-l:oqe 
sedimentation coefficient. differ, tn-0 moving boundaries vi11 be observed if 
the reaction is slon-. The LV e LY reaction of thyroglobulin, studied by Lundgren 
and Killiams (63), is believed to be Such a case. The problem of lion- the half- 
time of the reaction determines the resolution of the boundxies has been solved 
recently by Cann. Kirkn-ood, and Bron-n (18) for the case of a iectnngi!lar cell 
and constant field. (They were intereqted in the application to clectrophore4s 
experiments.) For the special case in which the rates of the forivard aiid rcwrse 
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reactions are the same, their calculations show that two maxima mill be resolved 
in the boundary gradient curve when the length of the sedimentation experiment 
is less than the half-time of the reactions. Although the apparent amounts of 
the two forms do not depend on the degree of resolution, the apparent sedimen- 
tation coefficients or mobilities do depend upon the half-time of the reaction 
and upon the time of sedimentation or electrophoresis. 

When the rates of reaction are zero, the standard equations for analysis of two 
solutes apply. When the rates of reaction are infinitely fast, the system behaves 
as if i t  contained only one solute. To find out whether an experimental system 
falls into the intermediate class in which effects of finite rates of reaction are 
significant, one can perform experiments at  different field strengths (i.e., a t  
varing w) and observe xhether the apparent sedimentation coefficients vary 
with w. 

TI. AIEhSUREMEKT O F  3IOLECULAR JVEIGHTS DURIXG THE APPROACH 
TO EQUILIBRIUM 

Archibald (6) observed that one can measure the molecular Teight of a solute 
by use of the boundary condition of zero f l o ~  a t  either end of the cell. Thus 
for a two-component system equations 29 and 43 give 

when the two ends of the cell are denoted by ro and r,. An expression for Mi is 
obtained by substituting equations 33 and 34 for s1 and D; the result is of course 
limited to  incompressible systems. 

At equilibrium equation 121 holds a t  every point in the cell; this is not surprising, 
since the flow is zero in both cases. However a t  equilibrium not only J but also 
a J / a r  = 0, and one might inquire whether the equilibrium relationship between 
the concentration and concentration gradients i a  established a t  the cell boundaries 
for the more complicated case of a multicomponent system. 

It can be shown in the following way that the equilibrium condition doe. hold 
a t  the cell boundaries during the approach to  equilibrium. The equations for 
flow relative to the cell (equations 2;) can be inverted by the use of determinants, 
yielding 

( 122) 

where the Rnb are a new set of phenonienological coefficients. This form of the 
equations finds several uses in thermodynamics of irrererqible processes (see 
Onsager (70, 71)). One can see from equation 122 that when all J ,  = 0 

(123) 
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This is the basic differential equation for sedimentation equilibrium and Weads 
directly to the result that, for incompressible systems: 

The same conclusion was reached by Kegeles, Klainer, and Salem (51) on the 
basis of a slightly different derivation. They have shown also (51) that, if all 
solutes have the same f i t  and Ri, one can obtain the weight-average molecular 
n-eight for a nonideal, polydisperse system. Only the limiting equation for infinite 
dilution of all solutes will be given here. Then, a t  zero time, equation 124 re- 
duces to 

a C  
2 = w2 r2cZi (1 - iji p)c:/RT ar ( r  = ro, rn, t = 0) ( 124a) 

since c = co everywhere in the cell at zero time. Multiplication by Ri,  followed 
by summation over all solutes, gives (6) : 

In  using the Archibald method it is convenient to have an expression for 
c or n, a t  To. Combination of equations 65 and 67 shom that 

so long as there remains a zero-gradient region in the center of the cell (see 7, 
51, 5 3 ) .  Trautman (94) has pointed out that  one can use this equation to find 
without knowing G. When there is only one solute, substitution of equation 126 
into 121 yields 

h plot of ( a c , / d r ) / r  a t  T O  against the integral on the right gives a straight line 
with slope w 2 s I / D ,  t o  the extent that ( s l / D )  is independent of c. 

Several studies of the hrchibald method have been reported; for example, see 
Klainer and Kegeles (53), Ginsburg, Appel, and Schachman (33) ,  and Smith, 
Wood, and Charlwood (86). 
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